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Unit 4- Special-Purpose Circuits and Techniques 
 

ARITHMETIC CIRCUITS 
 

INTEGER/FX ACCUMULATOR 
 
DIGITAL SYSTEM  (FSM +  Datapath circuit) 
▪ sclr: Synchronous cllear. If E = ‘1’ and sclr = ‘1’, then the output bits of the registers are set to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Finite State Machine (FSM): 
 

 
 
 
 
 
 
 
 
▪ Algorithmic State Machine (ASM): 
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CORDIC (COORDINATE ROTATION DIGITAL COMPUTER) ALGORITHM 
 

CIRCULAR CORDIC 
▪ The original circular CORDIC algorithm is described by the following iterative equations, where 𝑖 is the index of the iteration 

(𝑖 =  0, 1, 2, 3,… , 𝑁 − 1). Depending on the mode of operation, the value of 𝛿𝑖 is either +1 or –1: 

𝑥𝑖+1 = 𝑥𝑖 + 𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛−1(2−𝑖)

 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

▪ Depending on the mode of operation, the quantities X, Y and Z converge to the following values, for sufficiently large 𝑁: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥0𝑐𝑜𝑠𝑧0 − 𝑦0𝑠𝑖𝑛𝑧0)

𝑦𝑛 = 𝐴𝑛(𝑦0𝑐𝑜𝑠𝑧0 + 𝑥0𝑠𝑖𝑛𝑧0)
𝑧𝑛 = 0

 
𝑥𝑛 = 𝐴𝑛√𝑥0

2 + 𝑦0
2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧0 + 𝑡𝑎𝑛−1(𝑦0 𝑥0⁄ )

 

𝐴𝑛 ← ∏ √1 + 2−2𝑖𝑁−1
𝑖=0 . For 𝑁 →∝ , 𝐴𝑛 = 1.647. The 𝑡𝑎𝑛−1 function here has a different definition (called 𝑎𝑡𝑎𝑛2), as the 

values it computes lie in the range [−180°, 180°], i.e., it indicates the quadrant where the point (𝑥0, 𝑦0) lies. 

 
▪ 𝑁 iterations (𝑖 =  0, 1, 2, 3,… , 𝑁 − 1). 𝑥0, 𝑦0, 𝑧0 are the initial values, and 𝑥𝑁 , 𝑦𝑁, 𝑧𝑁 are the final values. At iteration 𝑖,  𝑥𝑖+1, 

𝑦𝑖+1, 𝑧𝑖+1 are computed. Example (𝑁 = 4): 

 
𝑖 = 0 𝑥0 𝑦0 𝑧0 0 = 𝑇𝑎𝑛−1(20) 𝛿0 Iteration 0 computes 𝑥1, 𝑦1, 𝑧1 

𝑖 = 1 𝑥1 𝑦1 𝑧1 1 = 𝑇𝑎𝑛−1(2−1) 𝛿1 Iteration 1 computes 𝑥2, 𝑦2, 𝑧2 

𝑖 = 2 𝑥2 𝑦2 𝑧2 2 = 𝑇𝑎𝑛−1(2−2) 𝛿2 Iteration 2 computes 𝑥3, 𝑦3, 𝑧3 

𝑖 = 3 𝑥3 𝑦3 𝑧3 3 = 𝑇𝑎𝑛−1(2−3) 𝛿3 Iteration 3 computes 𝑥4, 𝑦4, 𝑧4 

 𝑥4 𝑦4 𝑧4   Final Values 

 
▪ With a proper choice of the initial values 𝑥0, 𝑦0, 𝑧0  and the operation mode, the following functions can be directly computed: 

✓ 𝑦0 = 0, 𝑥0 = 1 𝐴𝑛⁄ , rotation mode → 𝑥𝑛 = 𝑐𝑜𝑠𝑧0, 𝑦𝑛 = 𝑠𝑖𝑛𝑧0 

✓ 𝑧0 = 0, 𝑥0 = 1, vectoring mode  → 𝑧𝑛 = 𝑡𝑎𝑛−1(𝑦0) 

✓ 𝑥0 = 𝑎, 𝑦0 = 𝑏, vectoring mode  → 𝑥𝑛 = 𝐴𝑛√𝑎2 + 𝑏2. We need to post-scale the output. 

 

LINEAR CORDIC 
▪ This is an extension to the circular CORDIC. No scaling corrections are needed. (𝑖 =  1, 2, 3, …). 

𝑥𝑖+1 = 𝑥𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 2−𝑖
 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

▪ Depending on the mode of operation, the quantities X, Y and Z converge to the following values, for sufficiently large 𝑁: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝑥1

𝑦𝑛 = 𝑦1 + 𝑥1𝑧1

𝑧𝑛 = 0
 

𝑥𝑛 = 𝑥1

𝑦𝑛 = 0

𝑧𝑛 = 𝑧1 + 𝑦1 𝑥1⁄
 

 
▪ With a proper choice of the initial values 𝑥0, 𝑦0, 𝑧0  and the operation mode, the following functions can be directly computed: 

✓ 𝑦1 = 0, rotation mode → 𝑦𝑛 = 𝑥1𝑧1 

✓ 𝑧1 = 0, vectoring mode  → 𝑧𝑛 = 𝑦1 𝑥1⁄  

 
HYPERBOLIC CORDIC 
▪ This extension to the original CORDIC equations allows for the computation of hyperbolic functions, where 𝑖 is the index of 

the iteration (𝑖 =  1, 2, 3, …). The following iterations must be repeated to guarantee convergence: 𝑖 = 4, 13, 40,… , 𝑘, 3𝑘 + 1. 

𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑡𝑎𝑛ℎ−1(2−𝑖)

 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

▪ Depending on the mode of operation, the quantities X, Y and Z converge to the following values, for sufficiently large 𝑁: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥1𝑐𝑜𝑠ℎ𝑧1 + 𝑦1𝑠𝑖𝑛ℎ𝑧1)

𝑦𝑛 = 𝐴𝑛(𝑦1𝑐𝑜𝑠ℎ𝑧1 + 𝑥1𝑠𝑖𝑛ℎ𝑧1)
𝑧𝑛 = 0

 
𝑥𝑛 = 𝐴𝑛√𝑥1

2 − 𝑦1
2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧1 + 𝑡𝑎𝑛ℎ−1(𝑦1 𝑥1⁄ )

 

𝐴𝑛 ← ∏ √1 − 2−2𝑖𝑁
𝑖=1  (this includes the repeated iterations 𝑖 = 4, 13, 40,…,). For 𝑁 →∝ , 𝐴𝑛 ≅ 0.8 
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▪ With a proper choice of the initial values 𝑥1, 𝑦1, 𝑧1  and the operation mode, the following functions can be directly computed: 

✓ 𝑦1 = 0, 𝑥1 = 1 𝐴𝑛⁄ , rotation mode → 𝑥𝑛 = 𝑐𝑜𝑠ℎ𝑧1, 𝑦𝑛 = 𝑠𝑖𝑛ℎ𝑧1 

✓ 𝑧1 = 0, 𝑥1 = 1, vectoring mode  → 𝑧𝑛 = 𝑡𝑎𝑛ℎ−1(𝑦1) 
✓ 𝑥1 = 𝑦1 = 1 𝐴𝑛⁄ , rotation mode → 𝑥𝑛 = 𝑦𝑛 = 𝑐𝑜𝑠ℎ𝑧1 + 𝑠𝑖𝑛ℎ𝑧1 = 𝑒𝑧1 

✓ 𝑥1 = 𝛼 + 1, 𝑦1 = 𝛼 − 1, 𝑧1 = 0, vectoring mode  → 𝑧𝑛 = 𝑡𝑎𝑛ℎ−1(𝛼 − 1 𝛼 + 1⁄ ) = (ln 𝛼) 2⁄ . 

✓ 𝑥1 = 𝛼 + 1 (4𝐴𝑛
2)⁄ , 𝑦1 = 𝛼 − 1 (4𝐴𝑛

2)⁄ , 𝑧1 = 0, vectoring mode  → 𝑥𝑛 = √𝛼 

 
RANGE OF CONVERGENCE 
▪ The basic range of convergence, obtained by a method developed by X. Hu et al, “Expanding the Range of Convergence of 

the CORDIC Algorithm”, results in: 
 

Rotation Mode: |𝑧𝑖𝑛| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=𝑖𝑖𝑛

  Circular: 𝑖𝑖𝑛 = 0, 𝑧𝑖𝑛 = 𝑧0, 𝛼𝑖𝑛 = 𝑡𝑎𝑛−1(
𝑦0

𝑥0
⁄ ) 

 Linear: 𝑖𝑖𝑛 = 1, 𝑧𝑖𝑛 = 𝑧1, 𝛼𝑖𝑛 =
𝑦1

𝑥1
⁄  

 Hyperbolic: 𝑖𝑖𝑛 = 1, 𝑧𝑖𝑛 = 𝑧1, 𝛼𝑖𝑛 = 𝑡𝑎𝑛ℎ−1(
𝑦1

𝑥1
⁄ ). Note that in 

the summation, we must repeat the terms 𝑖 = 4, 13, 40,  
Vectoring Mode: |𝛼𝑖𝑛| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=𝑖𝑖𝑛

 

 

▪ Circular: 𝜃𝑁 + ∑ 𝜃𝑖
𝑁
𝑖=0 = 𝑡𝑎𝑛−1(2−𝑁) + ∑ 𝑡𝑎𝑛−1(2−𝑖)𝑁

𝑖=0 = 1.7433 (𝑁 → ∞) 

 

Rotation |𝑧0| ≤ 1.7433 (99.9°) 
Input angle 𝜖 [−99.9°, 99.9°]. Functions with 

angles outside this range can be computed by 
applying trigonometric identities. 

Vectoring |𝑡𝑎𝑛−1(
𝑦0

𝑥0
⁄ )| ≤ 1.7433 (99.9°) →  

𝑦0
𝑥0

⁄ 𝜖〈−∞,∞〉 
There are no restrictions on the ratio  

𝑦0
𝑥0

⁄ . 

However, we cannot compute the angle for 
values outside the range [−99.9°, 99.9°]. 

 
▪ Linear: 𝜃𝑁 + ∑ 𝜃𝑖

𝑁
𝑖=1 = 2−𝑁 + ∑ 2−𝑖𝑁

𝑖=1 = 1 

 

Rotation |𝑧1| ≤ 1 In both cases, there is a strict limitation on the 
input argument of the linear function (e.g. 
multiplication, division) 

Vectoring |
𝑦1

𝑥1
⁄ | ≤ 1 

 

▪ Hyperbolic: 𝜃𝑁 + ∑ 𝜃𝑖
𝑁
𝑖=1 = 𝑡𝑎𝑛ℎ−1(2−𝑁) + ∑ 𝑡𝑎𝑛ℎ−1(2−𝑖)𝑁

𝑖=1 = 1.182 (𝑁 → ∞) 

 

Rotation |𝑧1| ≤ 1.182 
This is the limitation imposed to the input argument 
of the hyperbolic functions. Note that the full 
domain of the functions 𝑠𝑖𝑛ℎ and 𝑐𝑜𝑠ℎ is 〈−∝,∝〉. 

Vectoring |𝑡𝑎𝑛ℎ−1(
𝑦1

𝑥1
⁄ )| ≤ 1.182 →  |

𝑦1
𝑥1

⁄ | ≤ 0.807 
This is the limitation imposed to the ratio of the 
input arguments of the hyperbolic functions. Note 
that the domain of 𝑡𝑎𝑛ℎ−1 is 〈−1,1〉.  

 
EXPANDED CORDIC ALGORITHM 
▪ The limited range of convergence of the original CORDIC algorithm can be expanded by including iterations with negative 

indices. We describe the expanded circular and hyperbolic CORDIC algorithms, and the functions that we will implement. 
 

EXPANDED CIRCULAR CORDIC 

∀𝑖: {

𝑥𝑖+1 = 𝑥𝑖 + 𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛−1(2−𝑖)

 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
▪ There are 𝑀 negative iterations (𝑖 = −𝑀,… ,−1) and 𝑁 positive iterations ( 𝑖 = 0,1,… , 𝑁 − 1). For sufficiently large 𝑁, the 

values of 𝑥𝑛 , 𝑦𝑛, 𝑧𝑛 converge to: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥𝑖𝑛𝑐𝑜𝑠𝑧𝑖𝑛 − 𝑦𝑖𝑛𝑠𝑖𝑛𝑧𝑖𝑛)

𝑦𝑛 = 𝐴𝑛(𝑦𝑖𝑛𝑐𝑜𝑠𝑧𝑖𝑛 + 𝑥𝑖𝑛𝑠𝑖𝑛𝑧𝑖𝑛)
𝑧𝑛 = 0

 
𝑥𝑛 = 𝐴𝑛√𝑥𝑖𝑛

2 + 𝑦𝑖𝑛
2 ,     𝑦𝑛 = 0

𝑧𝑛 = 𝑧𝑖𝑛 + 𝑡𝑎𝑛−1(𝑦𝑖𝑛 𝑥𝑖𝑛⁄ )

 

𝐴𝑛 = ∏ √1 + 2−2𝑖𝑁−1
𝑖=−𝑀 . Here, the value of 𝑀 affects 𝐴𝑛. 

 
▪ We can cover the entire domain of 𝑐𝑜𝑠/𝑠𝑖𝑛 and range of 𝑡𝑎𝑛−1 with 𝜃𝑚𝑎𝑥(𝑀) = 𝜋, i.e. 𝑀 = 2.  
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▪ 𝑁 + 𝑀 iterations (𝑖 = −𝑀,−𝑀 + 1,… , 0, 1, 2, 3,… , 𝑁 − 1). 𝑥−𝑀, 𝑦−𝑀, 𝑧−𝑀 are the initial values, and 𝑥𝑁, 𝑦𝑁, 𝑧𝑁 are the final 
values. At iteration 𝑖,  𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1 are computed. Example (𝑀 = 2,𝑁 = 4): 

 
𝑖 = −2 𝑥−2 𝑦−2 𝑧−2 −2 = 𝑇𝑎𝑛−1(22) 𝛿−1 Iteration -2 computes 𝑥−1, 𝑦−1, 𝑧−1 

𝑖 = −1 𝑥−1 𝑦−1 𝑧−1 −1 = 𝑇𝑎𝑛−1(21) 𝛿−2 Iteration -1 computes 𝑥0, 𝑦0, 𝑧0 

𝑖 = 0 𝑥0 𝑦0 𝑧0 0 = 𝑇𝑎𝑛−1(20) 𝛿0 Iteration 0 computes 𝑥1, 𝑦1, 𝑧1 

𝑖 = 1 𝑥1 𝑦1 𝑧1 1 = 𝑇𝑎𝑛−1(2−1) 𝛿1 Iteration 1 computes 𝑥2, 𝑦2, 𝑧2 

𝑖 = 2 𝑥2 𝑦2 𝑧2 2 = 𝑇𝑎𝑛−1(2−2) 𝛿2 Iteration 2 computes 𝑥3, 𝑦3, 𝑧3 

𝑖 = 3 𝑥3 𝑦3 𝑧3 3 = 𝑇𝑎𝑛−1(2−3) 𝛿3 Iteration 3 computes 𝑥4, 𝑦4, 𝑧4 

 𝑥4 𝑦4 𝑧4   Final Values 

 
▪ Special Expanded Circular CORDIC: Alternatively, we can repeat the iteration 𝑖 = 0 two more times (𝑖 = 0,0,0,1,2, , … , 𝑁 −

1) in order to get 𝜃𝑚𝑎𝑥(𝑀) = 𝜋. This method optimizes hardware resources. 

✓ 𝐴𝑛 = (1 + 20)∏ √1 + 2−2𝑖𝑁−1
𝑖=0 . For 𝑁 →∝ , 𝐴𝑛 = 3.2935 

✓ 𝑁 + 2 iterations (𝑖 = 0,0,0, 1, 2, 3, … , 𝑁 − 1). 𝑥0, 𝑦0, 𝑧0: initial values, and 𝑥𝑁 , 𝑦𝑁, 𝑧𝑁 are the final values. Example (𝑁 = 4): 

 
𝑖 = 0 𝑥0 𝑦0 𝑧0 0 = 𝑇𝑎𝑛−1(20) 𝛿0 Iteration 0 computes 𝑥0, 𝑦0, 𝑧0 𝑥0, 𝑦0, 𝑧0 is updated 

𝑖 = 0 𝑥0 𝑦0 𝑧0 0 = 𝑇𝑎𝑛−1(20) 𝛿0 Iteration 0 computes 𝑥0, 𝑦0, 𝑧0 𝑥0, 𝑦0, 𝑧0 is updated 

𝑖 = 0 𝑥0 𝑦0 𝑧0 0 = 𝑇𝑎𝑛−1(20) 𝛿0 Iteration 0 computes 𝑥1, 𝑦1, 𝑧1  

𝑖 = 1 𝑥1 𝑦1 𝑧1 1 = 𝑇𝑎𝑛−1(2−1) 𝛿1 Iteration 1 computes 𝑥2, 𝑦2, 𝑧2  

𝑖 = 2 𝑥2 𝑦2 𝑧2 2 = 𝑇𝑎𝑛−1(2−2) 𝛿2 Iteration 2 computes 𝑥3, 𝑦3, 𝑧3  

𝑖 = 3 𝑥3 𝑦3 𝑧3 3 = 𝑇𝑎𝑛−1(2−3) 𝛿3 Iteration 3 computes 𝑥4, 𝑦4, 𝑧4  

 𝑥4 𝑦4 𝑧4   Final Values  

 

EXPANDED HYPERBOLIC CORDIC 
▪ This extension to the original CORDIC equations allows for the computation of hyperbolic functions, where 𝑖 is the index of 

the iteration (𝑖 =  1, 2, 3, …). The following iterations must be repeated to guarantee convergence: 𝑖 = 4, 13, 40,… , 𝑘, 3𝑘 + 1. 

𝑖 ≤ 0: {

𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑦𝑖(1 − 2𝑖−2)

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖(1 − 2𝑖−2)

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛ℎ−1(1 − 2𝑖−2)

 

𝑖 > 0: {

𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛ℎ−1(2−𝑖)

 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
▪ There are 𝑀 + 1 negative iterations (𝑖 = −𝑀,… ,−1,0) and 𝑁 positive iterations ( 𝑖 = 1,2,… , 𝑁), with repeated iterations 

4, 13, 40,… , 𝑘, 3𝑘 + 1 to guarantee convergence. For sufficiently large 𝑁, the values of 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛 converge to: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥𝑖𝑛𝑐𝑜𝑠ℎ𝑧𝑖𝑛 + 𝑦𝑖𝑛𝑠𝑖𝑛ℎ𝑧𝑖𝑛)

𝑦𝑛 = 𝐴𝑛(𝑦𝑖𝑛𝑐𝑜𝑠ℎ𝑧𝑖𝑛 + 𝑥𝑖𝑛𝑠𝑖𝑛ℎ𝑧𝑖𝑛)
𝑧𝑛 = 0

 
𝑥𝑛 = 𝐴𝑛√𝑥𝑖𝑛

2 − 𝑦𝑖𝑛
2 ,     𝑦𝑛 = 0

𝑧𝑛 = 𝑧𝑖𝑛 + 𝑡𝑎𝑛ℎ−1(𝑦𝑖𝑛 𝑥𝑖𝑛⁄ )

 

𝐴𝑛 = (∏ √1 − (1 − 2𝑖−2)20
𝑖=−𝑀 )∏ √1 − 2−2𝑖𝑁

𝑖=1 . Here, the value of 𝑀 affects 𝐴𝑛. 

 
▪ As 𝑀 increases, the range of convergence [−𝜃𝑚𝑎𝑥(𝑀), 𝜃𝑚𝑎𝑥(𝑀)] can be greatly enlarged. However, this comes at the expense 

of a larger resource consumption. 
𝑀 𝑐𝑜𝑠ℎ𝑥, 𝑠𝑖𝑛ℎ𝑥, 𝑒𝑥  ln 𝑥 

𝐵𝑎𝑠𝑖𝑐 𝐶𝑂𝑅𝐷𝐼𝐶 [−1.11820, 1.11820] (0, 9.35958] 

0 [−2.09113, 2.09113] (0, 65.51375] 

1 [−3.44515, 3.44515] (0, 982.69618] 

2 [−5.16215, 5, 16215] (0, 3.04640 × 104] 

3 [−7.23371, 7.23371] (0, 1.91920 × 106] 

4 [−9.65581, 9.65581] (0, 2.43742 × 108] 

5 [−12.42644, 12.42644] (0, 6.21539 × 1010] 

6 [−15.54462, 15,54462] (0,3.17604 × 1013] 

7 [−19.00987, 19.00987] (0, 3.24910 × 1016] 

8 [−22.82194, 22.82194] (0, 6.65097 × 1019] 

9 [−26.98070, 26,98070] (0, 2.72357 × 1023] 

10 [−31.48609, 31.48609] (0, 2.23085 × 1027] 

 

COMPUTATION OF TRIGONOMETIC AND HYPERBOLIC FUNCTIONS 
▪ The 𝑐𝑜𝑠/𝑠𝑖𝑛/𝑡𝑎𝑛−1 (circular) and 𝑐𝑜𝑠ℎ/𝑠𝑖𝑛ℎ/𝑒𝑥/𝑡𝑎𝑛ℎ−1 (hyperbolic) functions can be directly computed by proper selection 

of the operation mode and the initial values 𝑥𝑖𝑛  = 𝑥−𝑀 , 𝑦𝑖𝑛  = 𝑦−𝑀, 𝑧𝑖𝑛  = 𝑧−𝑀. 
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✓ For 𝑒𝛼 = 𝑐𝑜𝑠ℎ𝛼 + 𝑠𝑖𝑛ℎ𝛼, we need 𝑥𝑖𝑛 = 𝑦𝑖𝑛 = 1 𝐴𝑛⁄ , 𝑧𝑖𝑛 = 0, mode=rotation. 
 

▪ The functions √𝑥, 𝑙𝑛𝑥, and 𝑥𝑦 can be computed with the hyperbolic CORDIC: 

✓ For √𝑥, we use 𝑥𝑖𝑛 = 𝑥 + 1 (4𝐴𝑛
2)⁄ , 𝑦𝑖𝑛 = 𝑥 − 1 (4𝐴𝑛

2)⁄ , 𝑧𝑖𝑛 = 0, mode=vectoring. 

✓ For 𝑙𝑛𝑥 = 2𝑡𝑎𝑛ℎ−1(𝑥 − 1 𝑥 + 1⁄ ), we use 𝑥𝑖𝑛 = 𝑥 + 1, 𝑦𝑖𝑛 = 𝑥 − 1, 𝑧𝑖𝑛 = 0, mode=vectoring. A product by 2 is needed. 

 
▪ Powering: 𝑥𝑦 = 𝑒𝑦 𝑙𝑛 𝑥. We first get 𝑧𝑛 = (ln 𝑥) 2⁄ , followed by 𝑧𝑛 × 2𝑦 = 𝑦 ln 𝑥. Then, we use 𝑥𝑖𝑛 = 𝑦𝑖𝑛 = 1 𝐴𝑛⁄ , 𝑧𝑖𝑛 = 𝑦 ln 𝑥, 

mode=rotation to get 𝑥𝑛 = 𝑒𝑦 ln 𝑥 = 𝑥𝑦. 

✓ Argument bounds of 𝑥𝑦 ((𝑥, 𝑦) values for which 𝑥𝑦 converges): |𝑦 ln 𝑥| ≤ 𝜃𝑚𝑎𝑥(𝑀). 
 
▪ The parameter 𝑀 controls the range of convergence: [−𝜃𝑚𝑎𝑥(𝑀), 𝜃𝑚𝑎𝑥(𝑀)]. 

✓ [−𝜃𝑚𝑎𝑥(𝑀), 𝜃𝑚𝑎𝑥(𝑀)]: This is the bound on the domain of 𝑐𝑜𝑠/𝑠𝑖𝑛/𝑐𝑜𝑠ℎ/𝑠𝑖𝑛ℎ/𝑒𝑥 and the range of 𝑡𝑎𝑛−1, 𝑡𝑎𝑛ℎ−1. 

✓ The domain of 𝑙𝑛𝑥 is bounded by (0, 𝑒𝜃𝑚𝑎𝑥(𝑀)×2]. 

✓ The domain of √𝑥 is bounded by (0,
1

4𝐴𝑛
2 (

1+𝑡𝑎𝑛ℎ(𝜃𝑚𝑎𝑥)

1−𝑡𝑎𝑛ℎ(𝜃𝑚𝑎𝑥)
)].  

▪ As 𝑀 increases, the argument bounds of 𝑐𝑜𝑠ℎ, 𝑠𝑖𝑛ℎ, 𝑒𝑥, 𝑡𝑎𝑛ℎ−1, √𝑥, 𝑙𝑛𝑥 and 𝑥𝑦 are greatly enlarged. 

 
ITERATIVE FX ARCHITECTURE (BASIC CORDIC) 
▪ The architectures shown here are such that the inputs and outputs have an identical bit width. We can reach an optimal 

number of iterations by noticing the iteration at which 𝑖 = 𝑇𝑎𝑛−1(2−𝑖) is equal to zero due to for a given fixed-point format. 

𝑛:  input/output bit width 

  𝑛𝑔: additional guard bits on the LSB. 
  𝑛𝑟: 𝑛𝑟 =  𝑛𝑔 +  𝑛 : bit width of the internal registers and operators 

  𝑁: # of iterations (𝑖 =  0,1,… ,𝑁 − 1 for circular CORDIC, 𝑖 =  1,… , 𝑁 for linear/hyperbolic CORDIC) 

 
▪ 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖: make sure you can represent input, intermediate, and final values. For fractional bits, a common rule of thumb is 

“If 𝑛 bits is the desired output precision, the internal registers should have ⌈log2 𝑛⌉ additional guard bits at the LSB position”. 

In general, perform a thorough software simulation for a given number of iterations and find out the format required for 
proper representation of the 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖. 

 
Circular CORDIC 
▪ The figure depicts the architecture that implements the circular CORDIC equations in an iterative fashion. The LUT (look-up 

table) stores the elementary angles 𝑖 = 𝑇𝑎𝑛−1(2−𝑖). The process begins when a start signal is asserted. After 𝑁 clock cycles 

(i.e., 𝑁 iterations), the result is obtained in the registers X, Y and Z, and a new process can be started. 

▪ The state machine controls the load of the registers, the data that passes onto the multiplexers, the add/subtract decision 
for the adder/subtractors, and the count given to the barrel shifters and LUT. 
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Hyperbolic CORDIC 

▪ Here the LUT holds the 𝑖 = 𝑡𝑎𝑛ℎ−1(2−𝑖)  values with 𝑖 = 1,2,… , 𝑁. The FSM is more complex as it has to account for the 

repeated iterations. After 𝑁 − 1 + 𝑣 (𝑣: # of repeated iterations) clock cycles, the result is obtained in the registers X, Y and 

Z, and a new process can be started. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Linear CORDIC 
▪ Here the LUT holds the 𝑖 = 2−𝑖   values with 𝑖 = 1,2, … , 𝑁. After 𝑁 − 1 clock cycles, the result is obtained in the registers X, 

Y and Z, and a new process can be started. Note that we do not need an adder for 𝑥𝑖. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Note: These architectures do not specify the numerical representation we are using. We are free to use any representation 

we see fit (e.g.: fixed point, dual fixed point, floating point). The adders, barrel shifters, and LUT will change depending on 
the desired format. If an arithmetic unit requires more than one cycle to process its data, the FSM needs to account for this. 
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Example: FX Basic Circular CORDIC architecture. Format [16 14] 
▪ 𝑛𝑔 = 4 guard bits. They improve accuracy, as the barrel shifters will get rid of many LSBs. 

▪ mode = 0 → Rotation. mode = 1 → Vectoring. 

▪ LUT: It holds the angles represented in [16 14] (signed) from 𝑖 = 0 (𝑇𝑎𝑛−1(20)) to 𝑖 = 𝑁 − 1 (𝑇𝑎𝑛−1(2−(𝑁−1)). 

▪ Format [16 14] applied to the LUT angles: We found that the optimal number of iterations is 𝑁 = 14, since 𝑇𝑎𝑛−1(2−15)  =
𝑇𝑎𝑛−1(2−14) = 0. If we use 𝑁 >  14, Z will remain constant, and X, Y will update for a few more iterations (this depends on 

the guard bits). In the figure, we use 4 bits to represent the count from 0 to N-1. 
▪ The format [16 14] was selected for X, Y, Z based on software simulations: 

✓ Rotation: Getting 𝑠𝑖𝑛(𝑧0) and 𝑐𝑜𝑠(𝑧0): 
 Inputs: 𝑥0 = 𝑦0 = 1 𝐴𝑛⁄ ,  𝑧0 ∈ [−𝜋 2⁄ , 𝜋 2⁄ ] 

 Outputs: 𝑥𝑁 , 𝑦𝑁 ∈ [−√2, √2], 𝑧𝑁 = 0. Note: some intermediate values can be larger than outputs. 

✓ Vectoring: getting 𝑎𝑡𝑎𝑛2(1, 𝑦0) = 𝑎𝑡𝑎𝑛2(𝑦0 1⁄ ) 
 Inputs: 𝑥0 = 1, 𝑧0 = 0,  𝑦0 ∈ [−0.6,0.6] 
 Outputs: 𝑥𝑁 ∈ [0,1.92], 𝑧𝑁 ∈ [−0.5404,0.5404] 𝑦𝑁 = 0. Note: some intermediate values can be larger than outputs. 
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▪ Timing Diagram (N=14): 
✓ Input data: 𝑥𝑖𝑛 = 𝑥0, 𝑦𝑖𝑛 = 𝑦0, 𝑧𝑖𝑛 = 𝑧0. 

✓ Output data: 𝑥𝑜𝑢𝑡 = 𝑥14, 𝑦𝑜𝑢𝑡 = 𝑦14, 𝑧𝑜𝑢𝑡 = 𝑧14. 

✓ Counter goes from 0 to 13. Once input data is loaded, circuit needs N=14 cycles to produce the result. 
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FIXED-POINT SQUARE ROOT 
 

INTEGER SQUARE ROOT – BINARY SEARCH 
▪ A common algorithm for hardware implementation is the ‘binary search’ method. There are Restoring and Non-Restoring 

versions. 𝐷 (radical): 2𝑛 bits, 𝑄 (square root): 𝑛 bits. 

Restoring Algorithm Non-Restoring Algorithm 
𝑄 ← 0 
𝑓𝑜𝑟 𝑘 = 𝑛 − 1 → 0 

𝑞𝑘 ← 1 
𝑖𝑓 𝐷 < 𝑄2 𝑡ℎ𝑒𝑛 

𝑞𝑘 ← 0 
𝑒𝑛𝑑 

𝑒𝑛𝑑 

𝑞𝑛−1 ← 1 
𝑓𝑜𝑟 𝑘 = 𝑛 − 2 → 0 

𝑖𝑓 𝐷 < 𝑄2 𝑡ℎ𝑒𝑛 
𝑄 ← 𝑄 − 2𝑘 

𝑒𝑙𝑠𝑒 
𝑄 ← 𝑄 + 2𝑘 

𝑒𝑛𝑑 
𝑒𝑛𝑑 

Example: 𝐷 =  40 =  101000,𝑄 =  000, 𝑛 = 3 
𝑘 = 2: 𝑞2 = 1 (𝑄 = 100) 

40 <  42?  𝑁𝑜 
𝑘 = 1: 𝑞1 = 1 (𝑄 = 110) 

40 <  62?  𝑁𝑜 
𝑘 = 0: 𝑞0 = 1 (𝑄 = 111) 

40 <  72?  𝑌𝑒𝑠 → 𝑞0 = 0 (𝑄 = 110) 
Result: 𝑄 = 110, 𝑅 = 𝐷 − 𝑄2 = 0100 

Example: 𝐷 =  40 =  101000, 𝑛 = 3 
𝑞2 = 1 (𝑄 = 100) 
𝑘 = 1: 40 <  42?  𝑁𝑜  𝑄 ← 𝑄 + 21 = 110 
𝑘 = 0: 40 <  62?  𝑁𝑜  𝑄 ← 𝑄 + 20 = 111 

 
Result: 𝑄 = 111, 𝑅 = 𝐷 − 𝑄2? The LSB of the result might 

differ from that of the restoring case. Also, the remainder 
might be incorrect when using this algorithm. 

 
Non-restoring binary search hardware implementation 
▪ For hardware implementation, we will select the non-restoring version as it is a bit simpler to implement in hardware. We 

make the following definitions: 
✓ 𝑎𝑘 = 2𝑘. This is the correction factor at iteration 𝑘. 

✓ 𝑟𝑘 = 𝑄(𝑘). Value of the square root at iteration 𝑘. 

✓ 𝑟𝑘
2 = 𝑄(𝑘)2 = (𝑟𝑘+1 ± 𝑎𝑘)

2 = 𝑟𝑘+1
2 ± 2𝑎𝑘𝑟𝑘+1 + 𝑎𝑘

2.  

 

 Algorithm (re-defined) 
𝑖 𝑘 𝑎𝑘 2𝑎𝑘 𝑎𝑘

2 𝑟𝑘 𝑟𝑘
2 2𝑎𝑘𝑟𝑘+1 𝑟𝑛−1 ← 2𝑛−1 

𝑓𝑜𝑟 𝑘 = 𝑛 − 2 → 0 

𝑖𝑓 𝐷 < 𝑟𝑘
2 𝑡ℎ𝑒𝑛 

𝑟𝑘 ← 𝑟𝑘+1 − 𝑎𝑘 
𝑒𝑙𝑠𝑒 

𝑟𝑘 ← 𝑟𝑘+1 + 𝑎𝑘 
𝑒𝑛𝑑 
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2 𝑛 − 3 2𝑛−3 2𝑛−2 22𝑛−6    

… … … … …    
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𝑛 − 1 0 20 21 20    
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▪ For hardware implementation, 𝑎𝑘 and 𝑟𝑘 use 𝑛 bits, while 𝑎𝑘
2 and 𝑟𝑘

2 use 2𝑛 bits. Also, 2𝑎𝑘𝑟𝑘 

use 2𝑛 bits for its representation. 

▪ The representation used here is unsigned. However, we use a 2C adder/subtractor to 
implement 𝑟𝑘 − 𝑎𝑘. Here, note that if 𝑟𝑘 ≥ 𝑎𝑘 (which is the case), there is no need to perform 

the operation in 2C using 𝑛 + 1 bits, since we won’t be using the (𝑛 + 1)-bit (which is equal 

to 0). The same is true for 𝑟𝑘
2 + 𝑎𝑘

2 − 2𝑎𝑘𝑟𝑘, where 2𝑛 bits suffice. 

▪ Comparator: 𝑟𝑚 = 1 𝑖𝑓 𝑟𝑘
2 > 𝐷, 𝑒𝑙𝑠𝑒 0. 𝑟𝑒 = 1 𝑖𝑓 𝑟𝑘

2 = 𝐷, 𝑒𝑙𝑠𝑒 0  

▪ The FSM generates  = 𝑘 + 1, because the barrel shifter multiplies by 2𝑎𝑘 = 2𝑘+1 = 2𝑗. 

▪ 𝑎𝑘 is shifted to the right by 1 bit every clock cycle, 𝑎𝑘
2 is shifted to the right by 2 bits. 

▪ The following timing diagram is for 𝑛 = 8. It also assumes that 𝑟𝑘
2 is never equal to 𝐷. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
INTEGER SQUARE ROOT – OPTIMIZED NON-RESTORING ALGORITHM 
▪ This algorithm for non-restoring square root VLSI implementation, described in A New Non-Restoring Square Root Algorithm 

and its VLSI Implementation”, Y. Li, W. Chu, 1996, has proved to outperform most hardware implementations. 
▪ A simple addition/subtraction is required based on the result bit from the previous iteration. No need for multiplexors or 

multipliers. The result of the addition/subtraction is fed via registers to the next iteration directly even if it is negative. 
 

Radical: 𝐷 = 𝑑2𝑛−1𝑑2𝑛−2𝑑2𝑛−3𝑑2𝑛−4 …𝑑1𝑑0   Square Root: 𝑄 = 𝑞𝑛−1𝑞𝑛−2 …𝑞0 
 
We define: 𝐷𝑘 = 𝑑2𝑛−1𝑑2𝑛−2 …𝑑𝑘, 𝑘 = 0,1, … ,2𝑛 − 1  𝐷𝑘 has 2𝑛 − 𝑘 bits. Unsigned integer. 

  𝑄𝑘 = 𝑞𝑛−1𝑞𝑛−2 …𝑞𝑘, 𝑘 = 0,1, … , 𝑛 − 1  𝑄𝑘 has 𝑛 − 𝑘 bits. Unsigned integer. 
𝑅′𝑘 = 𝑟′𝑛𝑟′𝑛−1𝑟′𝑛−2 …𝑟′𝑘, 𝑘 = 0,1, … , 𝑛 − 1  𝑅′𝑘 has 𝑛 − 𝑘 + 1 bits. Signed (2C) integer. 

 

for 𝑘 = 𝑛 − 1 𝑑𝑜𝑤𝑛𝑡𝑜 0 

     if 𝑘 = 𝑛 − 1 𝑡ℎ𝑒𝑛 

         𝑅′𝑘 = 𝑑2𝑘+1𝑑2𝑘 − 01 (𝑅′𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2 − 01) 

     else 

           𝑅′𝑘 = {
𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘 − 𝑄𝑘+101, 𝑖𝑓𝑞𝑘+1 = 1

𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘 + 𝑄𝑘+111, 𝑖𝑓𝑞𝑘+1 = 0
 

    end 

     𝑞𝑘 = {
1, 𝑖𝑓 𝑅′𝑘 ≥ 0

0, 𝑖𝑓 𝑅′𝑘 < 0
 

end 

▪ This is non-restoring algorithm, meaning that at the las 
iteration we might not have the correct remainder 𝑅. To 

get the correct value of 𝑅, an extra operation might be 

required. 

Remainder 𝑅 = 𝑅0 = {
𝑅′0, 𝑖𝑓 𝑅′0 ≥ 0

𝑅′0 + 𝑄101 = 𝑅′0 + 𝑄01, 𝑖𝑓 𝑅′0 < 0
 

 
▪ In practice, the remainder is rarely used, and the operation 

is usually not implemented (to reduce resource 
consumption). 
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▪ At each iteration, we compute 𝑅′𝑘 = 𝑟′𝑛𝑟′𝑛−1𝑟′𝑛−2 …𝑟′𝑘 (estimated remainder). 
✓ 𝑅′𝑘: signed (2C) integer with at most 𝑛 − 𝑘 + 1 bits. 𝑄𝑘: unsigned integer with at most 𝑛 − 𝑘 bits. 

✓ 𝑅′𝑘 computation. We need: two bits from 𝐷 (𝑑2𝑘+1𝑑2𝑘) and 𝑄𝑘+1 (unsigned integer with 𝑛 − 𝑘 − 1 bits). 

 Left-hand side: 𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘. This is a signed number with 𝑛 − 𝑘 + 2 bits (𝑅′𝑘+1 requires 𝑛 − 𝑘 bits). 
 Right-hand side: This is an unsigned integer with 𝑛 − 𝑘 + 1 bits (since 𝑄𝑘+1 is unsigned integer wit 𝑛 − 𝑘 − 1 bits). 

We zero-extend to 𝑛 − 𝑘 + 2 bits so that it is represented as a signed integer.  

 Once the result is ready, we only take the 𝑛 − 𝑘 + 1 LSBs for 𝑅′𝑘 (it can be shown that 𝑅′𝑘 only needs 𝑛 − 𝑘 + 1 bits). 

✓ Once 𝑅′𝑘 is computed, we get 𝑞𝑘 (square root 𝑘th bit), thereby updating 𝑄𝑘. 
▪ 𝑘 = 0: 𝑅′0 has at most 𝑛 + 1 bits, i.e., one more bit than the square root 𝑄 = 𝑄0. As for the actual remainder 𝑅, it needs at 

most 𝑛 + 1 bits as an unsigned number (one more than the square root 𝑄): 

✓ 𝑅 = 𝑅′0 + 𝑄01: Since 𝑅′0 < 0 and 𝑄01 ≥ 0, we sign-extend 𝑅′0 and zero-extend 𝑄01 to 𝑛 + 2 bits. The result 𝑅 is a 

positive signed (n+2)-bit number. Thus, the remainder 𝑅 is a (n+1)-bit unsigned integer (we drop the MSB which is 0). 

 
▪ Example: 𝑛 = 4: 𝐷 =  01111111, 𝑄 =  0000. Note that 𝑅′𝑘 has one more bit than 𝑄𝑘. 

𝑘 𝑅′𝑘 𝑅′𝑘 width 𝑞𝑘 𝑄𝑘 = 𝑞𝑛−1 …𝑞𝑘 𝑄 

3 𝑅’3 = 01 − 01 =  00 ≥ 0 (𝑘 = 𝑛 − 1) 2 𝑞3 = 1 1 1000 

2 𝑅’2 = 𝑅’311 − 𝑄301 = 0011 − 0101 = 1110 = 110 < 0 3 𝑞2 = 0 10 1000 

1 𝑅’1 = 𝑅’211 + 𝑄211 = 11011 + 01011 = 00110 = 0110 < 0 4 𝑞1 = 1 101 1010 

0 𝑅’0 = 𝑅’111 − 𝑄101 = 011011 − 010101 = 000110 = 00110 < 0 5 𝑞0 = 1 1011 1011 

✓ Also: 𝑅 = 𝑅’0 = 00110 (since 𝑅′0 ≥ 0). 

 
Iterative Architecture 
▪ The input data DI is captured into shift register D. The bits 𝑑2𝑘+1𝑑2𝑘 correspond to the 2 MSBs of the register D. At 

every iteration, the register D shifts two bits to the left.  

✓ Register D: implemented by two parallel access shift registers: Do (for odd bits of D) and De (for even bits of D).  

▪ We use a register R that holds the estimated reminder 𝑅′𝑘. R and Q are initialized with 0’s. 

✓ To compute 𝑅′𝑘, we need an (n+2)-bit adder/subtractor, since on the last iteration (to compute 𝑅′0), we use n+2 bits: 

  𝑅′0 = {
𝑅′1𝑑1𝑑0 − 𝑄101, 𝑖𝑓𝑞1 = 1

𝑅′1𝑑1𝑑0 + 𝑄111, 𝑖𝑓𝑞1 = 0
. After computation, 𝑅′0 only requires 𝑛 + 1 bits (the LSBs).  

✓ The (n+2)-bit result of the adder/subtractor is stored on register R. Only the 𝑛 LSBs of the register R are fed back to the 

adder/subtractor. This is because, on the last iteration, we need 𝑅′1 that requires at most 𝑛 bits. 
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Iterative Architecture - Optimized 
▪ The register R holds the estimated reminder 𝑅′𝑘. The register 𝑄 has 𝑛 bits. 

Adder/subtractor: 𝑛 + 2 bits. This is because of last iteration: 𝑅′0 = {
𝑅′1𝑑1𝑑0 − 𝑄101, 𝑖𝑓𝑞1 = 1

𝑅′1𝑑1𝑑0 + 𝑄111, 𝑖𝑓𝑞1 = 0
.  

 
▪ (𝑛 + 2)-bit addition/subtraction of signed operands: 

 
 
 
 
 
 

✓ The 2 LSBs perform either 𝑥𝑦 + 11 or 𝑥𝑦 − 01, 𝑥𝑦 = 𝑑2𝑘+1𝑑2𝑘. The operation 
yields: 𝑐𝑏𝑎, where 𝑐 is the carry-in of the next stage of the adder/subtractor, 

and 𝑏𝑎 the result of the operation.  

 Note that 𝑥𝑦 − 01 =  𝑥𝑦 + 11. So, the result 𝑐𝑏𝑎 depends only on 𝑥𝑦. 

𝑐 = 𝑥 + 𝑦, 𝑏 = 𝑥𝑦̅̅ ̅̅ ̅̅ , 𝑎 = 𝑦̅. 

 This reduces the width of the adder/subtractor by 2 bits. 
 

✓ The 𝑛 MSBs perform 𝐴 ± 𝐵 ± 𝑐: an addition or subtraction where 𝑐 is the carry-in (or borrow-in). 

 For 𝑥𝑦 + 11: 𝑐 is the carry-in to the 𝑛-bit addition. 

 For 𝑥𝑦 − 01: 𝑐 is the borrow-in to the 𝑛-bit subtraction 𝐴 − 𝐵, 𝐴 = 𝑅′𝑘+1, 𝐵 = 𝑄𝑘+1. 
 𝑐 = 0: The 𝑛 MSBs implement 𝐴 + 𝐵̅ ≡ 𝐴 − 𝐵 − 1), so this is a borrow-in. 

 𝑐 = 1: The 𝑛 MSBs implement 𝐴 + 𝐵̅ + 1 = 𝐴 − 𝐵), so this is a no borrow-in. 

 
 Thus, for the 𝑛-bit operation, we need a 𝑛-bit adder/subtractor with carry-in that treats the carry-in as active-high 

carry-in for addition and as active-low borrow-in for subtraction. This is a standard adder/subtractor with carry-in: 
 
  
 
 
 
 

 
 
 
 
 
▪ Architecture:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ There are some small further simplifications: the register R only needs 𝑛 + 1 bits, thereby reducing the size of register R. 

Also, the MSB of 𝑄 does not need to be fed into the adder/subtractor, we can instead feed a ‘0’ (the MSB of 𝑄 is always 0, 

except in the result of the last iteration, whose MSB is not fed into Q). 
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COMPUTING MORE PRECISION BITS 
▪ If 𝑥 more precision bits are needed, we can append 2𝑥 zeros to D. This implies that we need to add 𝑥 extra bits to 𝑄. 

▪ 𝐷𝑝 = 𝐷 × 22𝑥, 𝑄𝑝 = √𝐷𝑝, 𝑄 = √𝐷 

▪ 𝐷𝑝: 2𝑛 + 2𝑥 bits, 𝑄𝑝: 𝑛 + 𝑥 bits. 𝑥: number of precision bits 

𝑄𝑝 = √𝐷𝑝 = √𝐷 × 22𝑥 = √𝐷 × 2𝑥 → 𝑄 = √𝐷 =
𝑄𝑝

2𝑥⁄  

Hardware changes – Optimized square root algorithm 
▪ Let’s define: 𝑛𝑞 = 𝑛 + 𝑥. We use 𝑄 with 𝑛𝑞 bits, R with 𝑛𝑞 + 1 bits. The adder/subtractor uses 𝑛𝑞 bits. 

▪ There is no need to increase the size of the register D. We can still use 2𝑛 bits, as ‘00’ is always shifted in (this emulates the 
2𝑥 zeros in the first 𝑥 cycles). In the FSM, C starts with 𝑛𝑞 − 1, the result is obtained after 𝑛𝑞 cycles. 

 
Example: (restoring algorithm) 

Get √𝐷 using 𝑥 = 2 precision bits. 𝐷 =  110111 = 55, 𝑛 = 3 

Then: 𝐷𝑝 =  1101110000 = 880. Then 𝑛𝑞 = 𝑛 + 𝑥 = 5 
𝑘 = 4: 𝑞4 = 1 (𝑄 = 10000). 880 <  162?  𝑁𝑜 

𝑘 = 3: 𝑞4 = 3 (𝑄 = 11000). 880 <  242?  𝑁𝑜 

𝑘 = 2: 𝑞2 = 1 (𝑄 = 11100). 880 <  282?  𝑁𝑜 
𝑘 = 1: 𝑞1 = 1 (𝑄 = 11110). 880 <  302?  𝑌𝑒𝑠 →  𝑞2 = 0 (𝑄 = 11100) 
𝑘 = 0: 𝑞0 = 1 (𝑄 = 11101). 880 <  292?  𝑁𝑜 

Result: 𝑄𝑝 = 11101, 𝑅𝑝 = 𝐷𝑝 − 𝑄𝑝2 = 100111 

Final Result: 𝑄 = 111.01 = 7.25 ≈ √55 

 
 
FX SQUARE ROOT 
 
What if the input (let’s call it 𝑫𝒇) is in fixed-point format [𝟐𝒏 𝟐𝒑]? 

▪ The integer input (called 𝐷) is related to 𝐷𝑓 by: 𝐷𝑓 = 𝐷 × 2−2𝑝. 2𝑛 = number of total bits of 𝐷𝑓. 

𝑄𝑓 = √𝐷𝑓 = √𝐷 × 2−2𝑝 = √𝐷 × 2−𝑝 

▪ So, we first compute the square root of 𝐷 (i.e., 𝐷𝑓 without the fractional point), and then we place the fractional point so 

that the number has 𝑝 fractional bits. 

 
▪ If we need extra precision bits, we only need to add 2𝑥 zeros to 𝐷. Thus 𝐷𝑝 = 𝐷 × 22𝑥. 

𝑄𝑓 = √𝐷𝑓 = √𝐷 × 2−𝑝 = √𝐷𝑝 × 2−2𝑥 × 2−𝑝 = √𝐷𝑝 × 2−𝑝−𝑥 

▪ Again, we first compute the square root of 𝐷𝑝, and then we place the fractional point so that the number 𝑄𝑓 has 𝑝 + 𝑥 

fractional bits. 
 
Example (restoring algorithm) 

𝐷𝑓 = 111011.1011 = 59.6875, 𝑝 = 2, 𝑛 = 5. Format [10 4]. 
𝑄𝑓 format: [𝑛 + 𝑥 𝑝 + 𝑥]. 𝑥: extra precision bits. 

 
Step 1: Get the integer D. 
  𝐷 = 1110111011 = 955 

 
Step 2: Add (optionally) 2𝑥 = 4 zeros 

  𝐷𝑝 = 11101110110000 = 15280 

 

Step 3: Get 𝑄𝑝 = √𝐷𝑝 

Then: 𝐷𝑝 =  11101110110000 = 15280. Then 𝑛𝑞 = 𝑛 + 𝑥 = 5 + 2 = 7 

𝑘 = 6: 𝑞6 = 1 (𝑄 = 1000000). 15280 <  642?  𝑁𝑜 

𝑘 = 5: 𝑞5 = 1 (𝑄 = 1100000). 15280 <  962?  𝑁𝑜 
𝑘 = 4: 𝑞4 = 1 (𝑄 = 1110000). 15280 <  1122?  𝑁𝑜 

𝑘 = 3: 𝑞3 = 1 (𝑄 = 1111000). 15280 <  1202?  𝑁𝑜 

𝑘 = 2: 𝑞2 = 1 (𝑄 = 1111100). 15280 <  1242?  𝑌𝑒𝑠 → 𝑞2 = 0 (𝑄 = 1111000) 
𝑘 = 1: 𝑞1 = 1 (𝑄 = 1111010). 15280 <  1222?  𝑁𝑜 

𝑘 = 0: 𝑞0 = 1 (𝑄 = 1111011). 15280 <  1232?  𝑁𝑜 

Result: 𝑄𝑝 = 1111011, 𝑅𝑝 = 𝐷𝑝 − 𝑄𝑝2 = 10010111 

Final Result (𝑝 + 𝑥 = 4): 𝑄𝑓 = 111.1011 = 7.6875 ≈ √59.6875 
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BCD ADDITION 
▪ A number of input interfaces and output interfaces use BCD to represent their data as it provides a convenient human-

readable format. The drawback of the BCD representation is arithmetic BCD circuits are complex and only 10 of the possible 
16-bit patterns are used. As a result, it is common to include BCD to binary and binary to BCD converters when dealing with 
human-readable interfaces. We can then perform the operations in binary arithmetic. 

▪ The importance of BCD has diminished somewhat, though it is still encountered. To illustrate the complexity of BCD arithmetic 
circuits, we consider the implementation of a BCD adder. 

 
BCD ADDER 

▪ This circuit adds two 4-bit unsigned numbers A and B (and a carry in). The binary addition is Z = A + B + cin. 

▪ Z(4..0) includes the carry out of the binary addition. S(4..0) includes the carry out of the BCD addition. Some implementations 

use S(7..0), where S(7..5) = “000”, so that the result is in BCD digits. 

✓ If A + B + cin  9: The BCD result matches the binary result: S = Z. Here, S(4) = 0. 

✓ If A + B + cin > 9: The BCD result does not match the binary result. The table below shows all these cases. If we treat Z 

and S as 5-bit binary numbers (unsigned integers), we have that: S = Z + 6. Here, S(4)=1. 

 

A+B+cin Z S   

10 01010 1 0000  

11 01011 1 0001  

12 01100 1 0010  

13 01101 1 0011  

14 01110 1 0100  

15 01111 1 0101  

16 10000 1 0110  

17 10001 1 0111  

18 10010 1 1000  

19 10011 1 1001 19 = 9 + 9 + 1 

 
HARDWARE IMPLEMENTATION 

▪ A and B are 4-bit wide. Here, Z(4): carry out of the 4-bit binary 

addition A+B+cin. 

▪ S(4) = 1 if A+B+cin > 9. S(4) can be thought as the carry out of 

the 4-bit binary addition S=A+B+cin+P (P=0000 or 0110). 

S(4) can be interpreted as the carry out of the BCD addition. 

▪ Note that Z(3..0) + 0110  1001. Here, the carry out is always 0. 

Thus, S(3..0) = Z(3...0) + P. 

▪ Note that if A or B is greater than 9, the result is invalid. 
▪ Some implementations add 3 more 0’s to the MSB, so as to 

have 2 BCD digits. 
 
MULTI DIGIT BCD ADDITION 
▪ To add multiple BCD digits, we need to propagate the carry from one 

digit to the other. Thus, we implement a carry-ripple BCD adder. 

▪ Here, we prefer to represent a BCD adder with an output D (4 bits) 

and a carry out cout.  

▪ In the examples shown, bi are the nibble-level carries generated by 

each BCD summation. They can also be interpreted as the carries 
resulting from a typical decimal summation by hand. 

▪ It is common to add “000” to the carry out of the multi-digit BCD 
addition. This is so that every BCD digit has 4 bits. 

▪ VHDL code: Multi-Digit BCD Adder. 
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CARRY SAVE ADDITION (CSA) 
▪ Here, the carries are not propagated. Instead, the carries are generated as outputs. 

▪ This technique allows for optimized implementation of 3-input adders and 2-input multipliers.  
 
CSA ADDER 
▪ The technique can be applied very effectively for 3-input adders. Inputs: three 𝑛-bit numbers X, Y, Z. Outputs: two 𝑛-bit 

numbers S and C. An 𝑛-bit CSA consists of 𝑛 disjoint full adders. 

▪ Unlike a normal adder (e.g.: carry-ripple adder, carry-lookahead adder), a CSA has the propagation delay of one FA. 
▪ This is a powerful mechanism to improve timing with little, if any area penalty (even reduced area). 
 
 
 
 
 
 
 
 

 
 
 
▪ The final result of adding 3 𝑛-bit numbers requires at most 𝑛 + 2 bits. In order to get this result we need to add 𝑠𝑁−1 …𝑠1𝑠0 

and 𝑐𝑁−1 …𝑐1𝑐00. This can be done by including a carry-ripple adder (CRA). 

▪ The circuit below works for unsigned numbers, as we sum 0 and 𝑐𝑁−1. For unsigned numbers, 𝑐𝑜𝑢𝑡 is the MSB of the final 

result. For signed numbers, sign-extend 𝑠𝑁−1. Note that for adding 3 numbers, this technique results in faster circuitry with 

fewer resources (2N FAs). If we were two carry-ripple adders to add 3 numbers, we would need (2N+1 FAs). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Adding ‘carry in’ 
▪ If we want to cascade CSA-based blocks together, we need a carry in. This is useful for multi-precision addition. 
▪ The figure shows how we updated the previous circuit (for unsigned numbers) to consider the 𝑐𝑖𝑛. Note that the CRA adder 

now is (𝑛 + 1)-bits wide. We sent down 𝑐𝑖𝑛 to the final ripple-carry adder. This circuit requires 2N+1 FAs. 
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CSA UNSIGNED MULTIPLIER 
▪ The concept of carry-save addition can also be used to implement 

efficient multipliers. An optimal implementation is shown in the figure.  
Delay is greatly reduced as compared to a typical array multiplier.  

▪ Every stage (row) does not propagate the carries to the left; instead, the 
carries are sent down to the next stage. This facilitates pipelining. Only 
the last stage (CRA) propagates carries to the left. Since the last stage 
has the longest delay, it can be replaced by a carry look-ahead adder for 
speed improvement. 

✓ Inputs: N-bit A, M-bit B where A and B are unsigned numbers.  

✓ Output: N+M bits. 

▪ The circuit uses M-1 CSA adders, each of N-1 bits. At the last stage, it uses a (N-1)-bit carry-ripple adder (CRA). 

▪ Hardware resources: (N-1)M FAs, and NM AND gates. 
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SPECIAL TECHNIQUES 
 

LUT (LOOK UP TABLE) APPROACH 
▪ In computer architecture, whenever a function is to be evaluated, we usually implement the algorithm that computes that 

function on hardware (e.g. 𝑠𝑞𝑟𝑡, 𝑙𝑛, 𝑒𝑥𝑝). We can always take advantage of the specific properties of the algorithm to optimize 

both speed and resource utilization. 
▪ Another option is not to compute the function values, but rather to store the values themselves in a LUT (ROM-like 

architecture). In this case, the value is taken directly from the memory rather than computed. For certain scenarios and 
under certain constraints, this idea can lead to more efficient architectures (both in speed and resource consumption). 

▪ In a LUT, the LUT contents are hardwired. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding one 
bit. It can also be seen as a multiplexor with fixed inputs. A 4-to-1 LUT can implement any 4-input logic function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
LARGER LUTS  
▪ 𝑁𝐼 − 𝑡𝑜 − 𝑁𝑂 LUT: 𝑁𝐼 input bits, 𝑁𝑂 output bits. This circuit can be thought of as a ROM with 2𝑁𝐼 addresses, each address 

holding 𝑁𝑂 bits. 

▪ A larger LUT can be built by building a circuit that allows for more LUT positions. 
▪ Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as shown in the figure. We can build a 

𝑁𝐼 − 𝑡𝑜 − 1 LUT with this method. 

▪ We can build a 𝑁𝐼 − 𝑡𝑜 − 𝑁𝑂 LUT using 𝑁𝑂 𝑁𝐼 − 𝑡𝑜 − 1 LUTs.  

 
 

 

 

 

 

 

 

 

 

 
▪ You can implement any function using any desired format (e.g.: integer, fixed-point, dual fixed-point, floating point): 

𝑦 =  𝑓(𝑥), where 𝑦 is represented with 𝑁𝑂 bits, and 𝑥 with 𝑁𝐼 bits. 

 
▪ The amount of resources increases linearly with the number of output bits (NO). However, the amount of resources grow 

exponentially with the number of input bits (NI).  Thus, this approach is only efficient for small input data sizes (≤ 12 in 

modern FPGAs). 
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FPGA RESOURCES 
▪ When designing digital circuits using VHDL, we usually describe circuits at the Register Transfer Level (RTL). This allows us 

to implement digital systems that include registers and combinational components. 
▪ When implementing digital circuits on FPGAs, we can include a variety of hard-wired components: Memories (BRAMs), FIFOs, 

Multiply-and-accumulate circuits (DSPs), Digital Clock Managers (DCMs), Analog-to-Digital Converters (ADCs). The quantity, 
speed, and configuration mechanism of these components depend on the specific FPGA vendor and FPGA family.  

▪ Here, we deal with the Xilinx® 7-Series devices such as the Artix-7 FPGA and Zynq-7000 PSoC. 
 

BLOCK RAMS (BRAMS) 
▪ In theory, we can design memory elements using registers. However, these resources are very expensive and they will not 

satisfy simple memory requirements. For example, the XC7A100T FPGA (inside the Nexys-4 DDR Board) contains 15850 × 8 
flip flops, i.e., we can only have 15850 bytes. This hardly satisfies simple memory demands in a digital system. 

▪ Because of this, modern FPGAs include hard-wired memory elements called Block RAMs (BRAMs). For example, the 
XC7A100T (inside the Nexys-4 DDR Board) has a maximum of 540 KB of BRAM. 

▪ Moreover, these BRAMs can be configured as true dual-port RAMs. This would not be possible to do with registers. 
▪ A comprehensive documentation of BRAMs for 7-series devices can be found in: UG473: 7 Series FPGAs Memory Resources. 
▪ Among the 7 series FPGA BRAM features, we can mention: 

✓ Two block RAM primitives (basic building blocks): RAMB36E1 (32,786 bits) and RAMB18E1 (16,384 bits). The port aspect 
ratio (data width and depth) can be configured as follows: 

RAMB18E1 RAMB36E1 

Data Width Address Width Depth Data Width Address Width Depth 

1 14 16,384 1 15 32,768 

2 13 8,192 2 14 16,384 

4 12 4,096 4 13 8,192 

8 11 2,048 8 12 4,096 

16 10 1,024 16 11 2,048 

   32 10 1,024 

✓ For Data Widths of 8, 16, and 32, there are byte-wide parity bits (1, 2, and 4), though they can also be used for additional 
data inputs, effectively increasing the memory capacity. 

✓ Two modes: Single dual-port (one read-only port and one write-only port) and True dual-port (both ports can access any 
memory location at any time).  

✓ Latency: 1 clock cycle. An output register can be added, which would increase the latency to 2 clock cycles. 
✓ Contents can be initialized using a RAM initialization file or by specifying a constant matrix as a parameter. 
✓ A byte-wide write enable is also included. The figure shows the True Dual-Port Data Flows for a RAMB36E1 primitive: 

 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Example: Memory with 16-bit data and generic depth. 

Memory size: 𝑛𝑟 × 𝑛𝑐 16-bit words. This is a 2D array, 

where data is stored in a raster scan fashion. 
 
RAMB36E1 block: 2048 16-bit words. 

Thus, we need 𝑁 = ⌈
𝑛𝑟×𝑛𝑐

2048
⌉ RAMB36E1 blocks. 

Address width: 𝑁𝐴 = ⌈log2(𝑛𝑟 × 𝑛𝑐)⌉.  
 
Memory decoding: the 11 LSBs of ‘address’ for all 

the RAMB36E1 blocks. The 𝑁 − 11 MSBs select from 

which RAMB36E1 block we write or read. 
 
Here, we do not use the dual-port feature of the memory, 
only 1 port is used. Also, the write enable is only 1 bit. 
 

File (Artix-7 FPGA or 7-series PL): in_RAMgen.vhd. 
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http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_9/in_RAMgen.vhd
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DIGITAL CLOCK MANAGERS 
▪ Advanced FPGAs (including the 7-series) include mixed-mode clock managers 

(MMCM) as well as phase-locked loops (PLL, a subset of MMCM functions). 
They allow for frequency synthesis, jitter filtering, clock deskew. 

▪ The Artix-7 FPGA includes a basic primitive: MMCME2_BASE. 

 

▪ MMCME2_BASE: This primitive provides access to the most frequently used 

features of a MMCM: clock deskew, frequency synthesis, coarse phase 
shifting, and duty cycle programming. 

▪ The number of output counters (dividers) is eight with some of them 
capable of driving out an inverted clock signal (180° phase shift).  

▪ The output ports (shows in the figure) are described as follows: 
✓ Clock Input: CLKIN1, CLKFBIN 

✓ Control Inputs: RST (high-level asynchronous reset, required if input clock 

conditions change) 
✓ Clock Outputs: 

 CLKOUT0  – CLKOUT6 (programmable clock outputs) 

 CLKOUT0B – CLOUKOUT3B (inverted clock outputs) 

 CLKFBOUT, CLKFBOUTB (MMCM feedback output) 

✓ Status Output: LOCKED (it asserts to indicate the MMCM has achieved frequency matching and phase alignment) 

✓ Power Control: PWRDWN (powers down the MMMCM) 

 
▪ Formulas for output frequency: 

✓ 𝐹𝐶𝐿𝐾𝑂𝑈𝑇# = 𝐹𝐶𝐿𝐾𝐼𝑁 ×
𝑀

𝐷×𝑂#
, #: 0,1,2,3,4,5,6 

✓ 𝐹𝐶𝐿𝐾𝑂𝑈𝑇𝐵 = 𝐹𝐶𝐿𝐾𝐼𝑁 ×
𝑀

𝐷×𝑀
=  

𝐹𝐶𝐿𝐾𝐼𝑁

𝐷
 

▪ There are restrictions on the values M, D, and O# (as well as on 𝐹𝑉𝐶𝑂 = 𝐹𝐶𝐿𝐾𝐼𝑁 ×
𝑀

𝐷
, which is the internal voltage controlled 

oscillator). For example, for the Artix-7 FPGAs, we have that: 
✓ M: 2 – 64 (fractions are allowed in increments of 1/8) 

✓ D: 1 -106 

✓ O0-O6: 1 – 128 (fractions are allowed for O0 in increments of 1/8) 

 
▪ Besides the frequency of operation, the duty cycle and phase can also be modified. A comprehensive documentation of 

MMCMs for 7-series devices can be found in: UG472: 7 Series FPGAs Clocking Resources User Guide. 
 

▪ MMCM wrapper: This circuit instantiates the MMCME2_BASE primitive and provides a simplified version. This circuit 

includes only three output clocks, whose frequency can be programmable (via parameters O_1, O_2, O_3). 

✓ File (Artix-7 FPGA or 7-series PL): MMCM_wrapper.vhd. 

✓ Example: input frequency: 100 MHz, O_0=1, O_1=2, O_2=4 

 clockout0 = 100 MHz 
 clockout1 = 50 MHz 
 clockout2 = 25 MHz 

 
 

 
 

C LKIN1

C LKFBIN

RST

PWRDWN

C LKO UT0

C LKO UT0B

C LKO UT1

C LKO UT1B

C LKO UT2

C LKO UT2B

C LKO UT3

C LKO UT3B

C LKO UT4

C LKO UT5

C LKO UT6

C LKFBOUT

C LKFBOUTB

MMCME2_BASE LO C KED

C LKIN1

C LKFBIN

RST

PWRDWN

MMCME2_BASE

resetn

clock

0

C LKO UT0

C LKO UT0B

C LKO UT1

C LKO UT1B

C LKO UT2

C LKO UT2B

C LKO UT3

C LKO UT3B

C LKO UT4

C LKO UT5

C LKO UT6

C LKFBOUT

C LKFBOUTB

LO C KED locked

clkout0

clkout1

clkout2

O_0 O_1 O_2

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_9/MMCM_wrapper.vhd

	Arithmetic Circuits
	Integer/FX Accumulator
	CORDIC (Coordinate Rotation Digital Computer) Algorithm
	Expanded circular CORDIC
	Expanded hyperbolic CORDIC
	Computation of trigonometic and hyperbolic functions
	Fixed-Point Square Root
	BCD Addition
	Carry Save Addition (CSA)

	Special Techniques
	LUT (Look Up Table) Approach

	FPGA Resources
	Block Rams (BRAMs)
	Digital Clock Managers


